Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.05.10.491301

ABSTRACT

The global emergence of SARS-CoV-2 variants has led to increasing breakthrough infections in vaccinated populations, calling for an urgent need to develop more effective and broad-spectrum vaccines to combat COVID-19. Here we report the preclinical development of RQ3013, an mRNA vaccine candidate intended to bring broad protection against SARS-CoV-2 variants of concern (VOCs). RQ3013, which contains pseudouridine-modified mRNAs formulated in lipid nanoparticles, encodes the spike(S) protein harboring a combination of mutations responsible for immune evasion of VOCs. Here we characterized the expressed S immunogen and evaluated the immunogenicity, efficacy, and safety of RQ3013 in various animal models. RQ3013 elicited robust immune responses in mice, hamsters, and nonhuman primates (NHP). It can induce high titers of antibodies with broad cross-neutralizing ability against the Wild-type, B.1.1.7, B.1.351, B.1.617.2, and the omicron B.1.1.529 variants. In mice and NHP, two doses of RQ3013 protected the upper and lower respiratory tract against infection by SARS-CoV-2 and its variants. We also proved the safety of RQ3013 in NHP models. Our results provided key support for the evaluation of RQ3013 in clinical trials.


Subject(s)
Breakthrough Pain , COVID-19
2.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.05.11.442656

ABSTRACT

To generate drug molecules of desired properties with computational methods is the holy grail in pharmaceutical research. Here we describe an AI strategy, retro drug design, or RDD, to generate novel small molecule drugs from scratch to meet predefined requirements, including but not limited to biological activity against a drug target, and optimal range of physicochemical and ADMET properties. Traditional predictive models were first trained over experimental data for the target properties, using an atom typing based molecular descriptor system, ATP. Monte Carlo sampling algorithm was then utilized to find the solutions in the ATP space defined by the target properties, and the deep learning model of Seq2Seq was employed to decode molecular structures from the solutions. To test feasibility of the algorithm, we challenged RDD to generate novel drugs that can activate μ opioid receptor (MOR) and penetrate blood brain barrier (BBB). Starting from vectors of random numbers, RDD generated 180,000 chemical structures, of which 78% were chemically valid. About 42,000 (31%) of the valid structures fell into the property space defined by MOR activity and BBB permeability. Out of the 42,000 structures, only 267 chemicals were commercially available, indicating a high extent of novelty of the AI-generated compounds. We purchased and assayed 96 compounds, and 25 of which were found to be MOR agonists. These compounds also have excellent BBB scores. The results presented in this paper illustrate that RDD has potential to revolutionize the current drug discovery process and create novel structures with multiple desired properties, including biological functions and ADMET properties. Availability of an AI-enabled fast track in drug discovery is essential to cope with emergent public health threat, such as pandemic of COVID-19.


Subject(s)
COVID-19
3.
arxiv; 2021.
Preprint in English | PREPRINT-ARXIV | ID: ppzbmed-2105.05220v1

ABSTRACT

To generate drug molecules of desired properties with computational methods is the holy grail in pharmaceutical research. Here we describe an AI strategy, retro drug design, or RDD, to generate novel small molecule drugs from scratch to meet predefined requirements, including but not limited to biological activity against a drug target, and optimal range of physicochemical and ADMET properties. Traditional predictive models were first trained over experimental data for the target properties, using an atom typing based molecular descriptor system, ATP. Monte Carlo sampling algorithm was then utilized to find the solutions in the ATP space defined by the target properties, and the deep learning model of Seq2Seq was employed to decode molecular structures from the solutions. To test feasibility of the algorithm, we challenged RDD to generate novel drugs that can activate {\mu} opioid receptor (MOR) and penetrate blood brain barrier (BBB). Starting from vectors of random numbers, RDD generated 180,000 chemical structures, of which 78% were chemically valid. About 42,000 (31%) of the valid structures fell into the property space defined by MOR activity and BBB permeability. Out of the 42,000 structures, only 267 chemicals were commercially available, indicating a high extent of novelty of the AI-generated compounds. We purchased and assayed 96 compounds, and 25 of which were found to be MOR agonists. These compounds also have excellent BBB scores. The results presented in this paper illustrate that RDD has potential to revolutionize the current drug discovery process and create novel structures with multiple desired properties, including biological functions and ADMET properties. Availability of an AI-enabled fast track in drug discovery is essential to cope with emergent public health threat, such as pandemic of COVID-19.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL